

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

COURSE DESCRIPTION CARD - SYLLABUS

Course name				
Management and Production Engineeringymer				
Course				
Field of study		Year/Semester		
Material Engineering		2/4		
Area of study (specialization)		Profile of study		
Production systems		general academic		
Level of study		Course offered in		
Second-cycle studies		polisch		
Form of study		Requirements		
part-time		elective		
Number of hours				
Lecture	Laboratory classes	s Other (e.g. online)		
8	8			
Tutorials	Projects/seminars	S		
Number of credit points 2				
Lecturers				
Responsible for the course/lecturer: PhD Kinga Mencel		Responsible for the course/lecturer:		
email: kinga.mencel@put.poznan.pl				
ph. 61 6652787				
Faculty of Mechanical Engineering				
Piotrowo 3 60-965 Poznań				

Prerequisites

The student should obtain knowledge of mechanical, chemical and processing properties and applications of the plastics and rubber

Course objective

Components and classification of polymer materials. Thermoplastic polymers: polyolefins, polyvinyl chloride, plastics styrene and acrylate, polyamides, polycarbonate, polyacetal, thermoplastic rubber. Thermosetting polymers: phenoplasts and aminoplasts. Chemosetting polymers: unsaturated polyester, epoxy resins, rubber.

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Course-related learning outcomes

Knowledge

1. The student should characterize the basic types of polymeric materials - [K_W08, K_W10, K_W14]

2. The student should explain the influence of the structure of polymers on their properties - [K_W03, K_W08, K_W10, K_W14]

Skills

1. The student is able to select a polymer material for specific applications - [K_U01, K_U16, K_U21]

2. The student is able to determine the relationships between the structure and properties of polymers - [K_U01, K_U21]

Social competences

1. The student is able to work in a group - [K_K03]

2. The student is aware of the role of polymeric materials in the modern economy and everyday life - [K_K02]

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

Lecture: Test exam? 20 questions, each has three answers, one answer is correct, for a correct answer 1 point. Ratings: 20 points ? very good, 19? 18 points db +, 17? 16 points db, 15? 14 points dst +, 13? 12 points dst. 11 and less points ndst.

Laboratory: Credit based on a written answer concerning the content of each performed laboratory exercise, a report on each laboratory exercise prepared according to the instructor's instructions. To obtain credit for the exercises, all laboratories must be passed (positive grade from the answers and the report).

Programme content

Lecture:

1. Advantages and disadvantages of polymeric materials.

2. Chemical classification of polymers.

3. Rheological and technological classification of polymers: elastomers, plastomers, thermoplastics, thermosetting and chemosetting.

4. Properties and application of large-scale polymeric materials from the group of thermoplastics: polyolefins, poly (vinyl chloride), polystyrene and styrene copolymers, poly (methyl methacrylate), fluoropolymers, thermoplastic polyesters, aliphatic and aromatic polyamides, polycarbonates.

Lab:

1. Determination of the density of polymers

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

- 2. Determination of strength
- 3. Determination of impact strength
- 4. Determination of hardness
- 5. Identification of materials

Teaching methods

1.Lecture: multimedia presentation, presentation illustrated with examples given on the blackboard.

2. Laboratory exercises: practical exercises, performing experiments, discussion, team work, case studies.

Bibliography

Basic

1. Kelar K., Ciesielska D.: Fizykochemia polimerów ? wybrane zagadnienia, Wyd. Politechnika Poznańska 1998

2. Żuchowska D., Polimery konstrukcyjne, WNT, W-wa, wyd. II, 2002

3. Pieluchowski J., Puszyński A.: Technologia tworzyw sztucznych, WNT, Warszawa, 1998

Additional

. Rabek J. F., Współczesna wiedza o polimerach, Wydawnictwo Naukowe PWN, Warszawa 2008

Breakdown of average student's workload

	Hours	ECTS
Total workload	50	2,0
Classes requiring direct contact with the teacher	20	1,0
Student's own work (literature studies, preparation for laboratory	30	1,0
classes/tutorials, preparation for tests/exam, project preparation) ¹		

¹ delete or add other activities as appropriate